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ABSTRACT 

Two probability distributions are currently used to set the load list 

quantity for submarine tenders.  The Fleet Ballistic Missile (FBM) tender load 

list model uses the Poisson distribution if the quarterly average demand is 

less than or equal to one; otherwise, the Normal distribution is used.  The 

conventional AS model uses the Normal distribution with a range cut 

(currently a quarterly average demand of .5) to set the load list quantity. 

There is little documentation to validate the use of either the Normal or 

Poisson distributions. 

Summary statistics, box plots, and goodness-of-fit tests were used to 

evaluate the validity of the distributions currently in use and to hj'potheslze 

more appropriate distributions. Demand was analyzed at the aggregate, 

tender and Item level.  Since AS load lists are hull tailored, a test of 

homogeneity was conducted at the item level to determine if the same 

distribution can be used across all tenders.  Load lists were built from the 

proposed distributions and compared to the benchmarks.  Effectiveness was 

measured in terms of requisitions and units satisfied.  The impact on range 

and cost was also evaluated. 

We recommend computing the AS load list using the Geometric/Exponential 

probability distribution without a range cut in conjunction with a gross 

effectiveness goal. We further recommend that NAVSUPSYSCOM coordinate with 

SSPO to further evaluate the proposed distribution for FBM loads. 
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EXECUTIVE SUMMARY 

1. Eackgrourd.  The conventional submarine tender (AS) load list model uses 

the Normal distribution with a range cut (currently a quarterly demand average 

of .5) to set the load list quantity.  The Fleet Ballistic Missile (FBM) tender 

load list model uses the Polsson distribution, if the quarterly average demand 

is less than or equal to one; otherwise, the Normal distribution is used. 

There is little documentation to support the use of either distribution. 

2. Objective.  To determine the appropriate distribution(s) for use in require- 

ment's determination. 

3. Approach.  Forty-nine quarters of Mobile Logistics Support Force (MLSF) 

demand were used to hypothesize the appropriate distribution.  The Navy Ships 

Parts Control Center (SPCC) provided a candidate file and a 90 day MLSF demand 

extract for the AS-U to test the effectiveness of proposed probability 

distributions. 

Summary statistics, box plots, and goodness-of-flt tests were used to 

evaluate the distributions currently in use and to hypothesize an appropriate 

distribution.  Demand was analyzed at the aggregate and tender level to 

determine any patterns that exist, and at the Item level to determine an 

appropriate probability distribution.  Due to the hull constructed nature of 

AS load lists, a test of homogeneity was constructed at the item level to 

determine if the same distribution can be used across all tenders.  Test loads 

were constructed using the proposed distributions and these alternative load 

lists were compared to actual demand.  Effectiveness was measured in terms of 

requisitions and units satisfied.  The impact on range and cost was also 

evaluated. 



4. Findings.  The homogeneity test indicated that item demand did not vary 

substantially among tenders having demand for that Item. We found that demand 

is not Normally distributed at any level, and the Polsson distribution is also 

inappropriate. Demand is skewed in a rightward direction. The Geometric 

distribution provided the best fit for items with quarterly average demands 

less than or equal to one, and the Exponential distribution had the best fit 

for items with quarterly average demands greater than one. 

Given the current AS gross requisition effectiveness, the Geometric/ 

Exponential produces a load with the same effectiveness as the current model, 

but 19% less cost. Given the current cost of an AS load, the Geometric/ 

Exponential produces a load with A,954 more items and eight percentage points 

higher effectiveness.  Given the same cost, the Geometric/Normal and Polsson/ 

Normal produce even higher range and effectiveness: 11,02A more items and 11 

percentage points higher effectiveness.  However, we feel that applying a bud- 

get goal is inappropriate for optimization models of this type. We were unable 

to assess the impact on AS(FBM) loads due to the numerous post-model adjustments 

made by VITRO. 

5. Conclusions. AS tender demand is not Normally distributed.  Instead, 

demand is extremely skewed in a rightward direction. The Geometric and 

Exponential provided the best fit for items with quarterly average demands 

less than or equal to one and greater then one, respectively.  The Geometric/ 

Exponential distribution (with no range cut) is more cost effective than the 

current AS load. The Geometric/Normal and Poisson/Normal are also more cost 

effective than the current AS load and more cost effective than the Geometric/ 

Exponential at a budget goal; however, we feel that optimizing to a budget goal 

vice effectiveness goal is Inappropriate and unrealistic.       ■'■■■'■"':..[-f-i' 
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6.  Recommendation. We recommend that the conventional AS load list model 

use the Geometric/Exponential probability distribution with a gross 

effectiveness goal and no range cut Instead of the current Normal distribution 

with a range cut of .5. We further recommend that NAVSITSYSCOM coordinate 

with SSPO to evaluate the proposed probability distributions for an AS(FBM) and 

TRIDENT load list. 

ill 



I.  INTRODUCTION 

Two probability distributions are currently used in computing Submarine 

Tender (AS) load lists.  Tbe Polsson distribution is used for Fleet Ballistic 

Missile tenders (ASCFBMs)) if the quarterly demand average is less than or 

equal to one.  The Normal distribution is used for AS(FBMs) if the quarterly 

demand average is greater than one, and for conventional ASs, when the item 

passes the range cut (currently a quarterly demand average greater than or 

equal to 0.5). Range for AS(FBM) loads is determined by the depth computation; 

i.e., if the depth computes to zero, the item is not stocked. 

The Normal distribution can be represented by a bell shaped curve.  It is 

described by two parameters, the mean (y) and the standard deviation (o).  The 

curve is symmetrical about U, such that 68% of all observations lie within 

one a of V,  95.5% within two a of y, and 99.75% within three a of y. 

Using the Normal distribution, V- and cs are computed as: 

HII 
N 
E D 

1=1 

\i=l 

where 

f-Vi 

D = the demand for the 1  quarter 

N = the number of quarters of demand (currently eight) 

If historical demands (D ) are all zero, then the Best Replacement Factor (BRF) 

forecast is used: 



y = (BRF/4)(P0P) 

f 1.6(y) for y > 1 

I 2.l(y) for y < 1 

where i 

ERF = Best Replacement Factor 

POP = total population of an Item on the supported submarines that Is 

Fleet Installable and Tender installable 

Next, the computed acceptable risk of stockout is used to compute the 

"t-value".  The "t-value" represents the number of standard deviations away 

from the mean under the Normal curve that correspond to a specified risk. 

The preliminary depth is then calculated as 

Load List Depth = y + tO 

The Poisson distribution has a skewed (nonsymmetrical) shape.  It is 

often used in counting the number of occurrences of an event of small proba- 

bility in a fixed number of trials.  It has one parameter X. The value of 

X is simultaneously the mean value and the variance of this distribution. ; 

Using the Poisson distribution, the probability that demand equals zero 

is calculated first. 

■' ■" ,:'-i':■;■; 

P(Demand = 0) = e~ 

where 



e = the  base for the natural logarithm 

X = calculated same as the mean (y) under the Normal distribution 

If P(Demand = 0) Is greater than or equal to the desired protection (1-risk), 

then the depth is set at zero.  Otherwise, the probability that demand equals 

one is calculated. 

P(Demand = 1) = X (P(Demand =0)) 

If the sum of P(Demand =1) and P(Demand = 0) is greater than or equal to 

protection, we set the depth to one.  Otherwise, we continue the process until 

the depth is found, using the following recursive formula: 

P(Demand = X + 1) = P(Demand = ^) y 

There is little documentation to validate the use of the Normal and 

Polsson distributions.  The Simulation and Research System Policy and Concepts 

presentation for the retail models on 5 April 1983 established the need to 

determine the appropriate probability dlstribution(s) for use in load list 

requirements determination. 

II.  APPROACH " 

Mobile Logistics Support Force (FISF) demand data from the second quarter 

1972 to the second quarter 1984 for all submarine tenders and SUBASEs were used 

to hypothesize the appropriate probability distribution.  The MLSF demand data 

were summarized in quarterly buckets.  The Navy Ships Parts Control Center 



(SPCC) provided a candidate fl]e and a 90 day MI.SF demand extract for the AS-11 

covering the period from February 1985 to April 1985.  These files were used 

to test the effectiveness of proposed probability distributions. 

The following paragraphs describe the various statistical tests and perform- 

ance measures used in the study.  The mathematical formulae are found in 

APPENDIX A. 

A.  SUMMARY STATISTICS. 

1. Measures of Centrality.  There are three measures of location or 

central tendency of the data - mean, median, and mode. The mean (X) Is the 

average observation.  The m.edlan (N) is the middle observation (midpoint) or 50th 

percentlle.  Half the observations are less than the median and half are greater 

than the median.  The mode (M ) is the most freauent observation. 
o 

The mean, medlar, and mode will be equal if the probability distribution 

is symmetric; e.g., the Normal distribution.  If the distribution is skewed 

to the right, then the mean will be to the right of (greater than) the median. 

If the distribution Is skewed to the left, then the mean will be to the left 

of (less than) the median. 

2, Measures of Dispersion. The variance, standard deviation, and the 

variance to mean ratio are measures of the dispersion or spread of a 

distribution. 

The variance to mean ratio (L) is particularly useful in determining 

discrete probability distributions; e.g., the Poisson, Geometric, and Binomial 

distributions.  If the variance to mean ratio is greater than one, the 

distribution may be Geometric, equal to one implies Poisson, and less than one 

Implies Binomial. 



3. Skewness.  Skewness (SK) measures the symmetry or shape of a 

distribution.  Tf SK equals zero, the distribution is symmetric; e.g., Normal. 

When SK Is positive, the distribution is skewed to the right; e.g., Poisson. 

If SK is negative, the distribution is skewed to the left. 

4. Kurtosis.  Kurtosis (K) measures the heaviness of the tails or height 

of a distribution. When most of the data are close to the mean, then K is 

negative. Therefore, flat distributions with short tails, such as the Uniform, 

have negative kurtosis. K is zero for the Normal distribution. Heavy tailed 

distributions, such as the Exponential, have positive kurtosis. 

5. Two Examples Using the Summary Statistics.  To demonstrate the 

value of these statistics, two data sets were generated using a random number 

generator. Data Set 1 was generated using the Normal distribution and Data 

Set 2 was created using the Poisson distribution.  Each data set had 2,000 

observations.  TABLE I displays the summary statistics. 

TABLE I 

EXAMPLE SUMMARY STATISTICS 

DATA SET 1 DATA SET 2 

Mean (X) -0.01 0.50 

Median(M) -0.04 0 

Mode(M ) -3.51 0 

Variance(S^) 1.01 0.48 

Std (S) 1.00 0.69 

Variance to Mean Ratio (L) -100.00 0.96 

Skewness(SK) - .01 1.28 

Kurtosis(K) - -11 1.17 



The mean and median of Data Set 1 are fairly close (only .03 separates 

them).  The mode is substantially different; however, the number of observations 

constituting the mode may not be significant.  Both the skewness (SK) and the 

kurtosis (K) are close to zero.  Therefore, based on the summary statistics, a 

symmetrical distribution, such as the Normal, would be a good candidate for 

Data Set 1. ' 

The mean of Data Set 2 is greater than the median and mode, indicating 

the distribution is skewed in a positive direction.  This is further validated 

by the positive value of SK (1.2.8). A positive value of K Indicates heavy 

tall weight. Therefore, any skewed distribution, such as the Poisson, Binomial, 

Geometric, Exponential, or Cbi-Square, would be a good candidate for Data 

Set 2.  Since the variance to mean ratio Is close to one, the Geometric 

distribution can be eliminated. Further analysis (goodness-of-flt tests, etc.) 

is needed to determine which distribution provides the best fit for both Data 

Set 1 and Data Set 2. The summary statistics only aid in the Identification 

of candidate distributions. 

B.  BOX PLOTS.  A box plot is a graphical display showing spread, skewness, 

tail length, and outlying data points.  Box plots are particularly useful for 

comparing several data sets.  The ends of the box plot, two vertical lines 

accentuated with plus signs (+), are located at the 25th and 75th percentiles. 

A vertical line, accentuated with asterisks (*), denotes the median. The mean 

is indicated by a plus sign (+).  It is possible for the mean, median, and/or 

the 25th and 75th percentiles to have the same value (be on the same line). 

Horizontal lines - "whiskers" - denote data that are within 1.5 interquantlles 

of the box (where an Interquantlle is the length of the box; i.e., the distance 



between the 25th and 75th perccntiles). More extreme values are represented 

by a zero (0) If they are within three Interquantiles and an asterisk (*) if 

they are greater than three interquantiles. 

Using the data from the previous examples, box plots for Data Set 1 and 

Data Set 2 are displayed in FIGURES 1 and 2, with their respective histograms. 

As can be seen, the box plots are more compact than the histograms, and box 

plots (through the use of symbols) better account for extreme data points. Due 

to its compact nature, it is easier to view several data sets simultaneously 

with box plots than with histograms.  Furthermore, histograms are sensitive to 

the choice of intervals (or grouping factors). As can be seen by the following 

discussion, box plots yield more information than histograms. 
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FIGURE 1 



Using FIGURE 1, It Is evident that Data Pet 1 has a symiretrlcal shape 

by either graph.  The box plot shows that the mean and median fall on the 

same line, and that the range of values between the 25th and 75th percentiles 

is small.  Furthermore, approximately the same number of observations are 

smaller than the 25th percentlle or are greater than the 75th, but no values 

lie outside of three interquantiles. 
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The graphs In FIGITBE 2 Indicate that Data Set 2 Is skewed.  From the box 

plot of Data Set 2 we learn that the median and the 25th percentlle have the 

same value, and the mean is larger than the median, which is expected when 

positive skewness occurs.  (If negative skewness is the case, then we would 

expect the mean to be less than the median).  Also, there are no values smaller 

than the 25th percentlle, while there are values greater than the 75th. 

However, no values are larger than three interquantlles. 

C.  GOODNESS-OF-FIT TESTS.  The summary statistics and box plots are useful 

for determining possible probability distributions.  In order to determine 

which distribution has the best fit, we test the null hypothesis (H ) that the 
o 

data are representative of a particular distribution versus the alternative 

hypothesis (H ) that the data are not of that distribution.  If the test 

indicates that we should accept H , it does not necessarily mean that the 
o 

data are represented by that particular distribution; but, that there Js not 

enough evidence to reject the distribution. 

In this study, three types of goodness-of-fit tests are used - the 

Kolmogorov-Smirnov (KS) test, the Shapiro-Wilk W Test, and the Chi-Square 

goodness-of-fit test.  The KS test is valid for the Normal distribution and 

some other continuous distributions.  The W test is a more appropriate test 

of the Normal distribution for small samples.  The Chi-Square test is valid 

for all distributions, but is not considered as powerful.  However, it has 

been shown to have good power against skewed distributions. Due to software 

and theoretical limitations, the KS test was used to test the Normal distri- 

bution if the number of observations exceeded 50, the W test was used for the 

Normal distribution if the number of observations was 50 or less, and the 

Chl-Square test was used for all other distributions.  Each of the three 
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goodtiess-of-flt  tests  is described below.     The mathematical  formulae are  in 

APPEl^DIX A. 

1. Shapiro-Wilk V? Test. W is the ratio of the best estimate of the 

variance based on the sequence of a linear combination of the order statistics 

to the usual corrected sum of squares estimator of the variance (as defined 

in the summary statistics). W will have a value between zero and one. V is 

compared to the critical values given by Shaplro-Wilk. 

2. Kolmogorov-Smlrnov Test. Kolmogorov's D is computed by using 

a probability integral transformation function to convert data from the 

hypothesized distribution to the uniform distribution.  A distance test is 

then made comparing the transformed data set to the uniform distribution, 

with large values of D leading to the rejection of H^.  The probability of 

observing a larger value of D is then computed and compared to a table of 

critical values. 

3.  Chi-Square Coodness-of-Flt Test.  This technique tests the difference 

between the observed number of frequencies for an interval or cell, and the 

expected number of frequencies if the assumed distribution is correct.  The 

resultant Chl-Square statistic (X") will have K-l-P degrees of freedom 

(where K equals the number of cells or intervals and P equals the number of 

estimated parameters for the distribution).  If the hvpotheslzed distribution 

provides a good fit for the data, we would expect the value for X^ to be small. 

D.  KRUSKAL-WALLIS TEST FOB HOMOGENEITY.  If we want to know whether or not 

data from two or more data sets are the same, then we conduct a test of 

homogeneity.  The Kruskal-Wallls (K-W) test requires no knowledge or assumptions 

about the distribution of the data.  It tests the null hypothesis (H^) that the 

populations (data sets) are identical versus the alternative hypothesis (H^) 

11 



that at least one of the populations (data sets) has larger values (observations) 

than at least one of the other data sets. 

(  To construct the K-W statistic, we begin by merging the data sets and assign- 

ing ranks to all the observations, from 1 for the smallest value to N for the 

largest observation.  In the event that two or more observations have the same 

value (tie), the ranks are averaged and each tied value is assigned the same 

rank.  The ranks for each data set are then summed.  The K-W statistic Is then 

computed and adjusted for ties (KW). Ve  reject H if KW' is greater than or 

equal to a chi-square statistic (X^) with K-1 degrees of freedom (where K is 

the number of data sets) at the appropriate level of acceptance. 

E.  PERFORMANCE MEASURES. Load list effectiveness was measured by comparing 

the test loads against 90 days of actual demands.  Effectiveness was measured 

in terms of requisitions and units satisfied. The effectiveness measurements 

were made with noncandidate items included (gross effectiveness) and excluded 

(model effectiveness).  Gross effectiveness represents the effectiveness the ship 

actually experiences, while model effectiveness indicates how well the math model 

determines range and depth for the candidate items. We also evaluated the impact 

on range and cost.  The various performance measurements are defined below: 

Total Range = the number of items on the load list. 

Items on Load List without Demand = items on the load list that had no 

demand in the 90 day test period. 

Candidate Items not on Load List with Demand = items on the candidate 

file which did not make the load list, that had a demand in the 90 day 

test period. 

Cost of Load List = cost or value of the items on the load list. 

12 



Value No Demand Items = cost or value of those Items on the load list 

that had no demand in the 90 day test period. 

Gross Requisition Effectiveness = percent of all requisitions demanded 

in the 90 day test period, satisfied (both candidate and noncandidate 

items). 

Model Requisition Effectiveness = percent of requisitions demanded in 

the 90 day test period, and satisfied by those items that were on the 

candidate file (noncandidate items excluded). 

Gross Unit Effectiveness = percent of all units demanded in the 90 day 

test period, satisfied (both candidate and noncandidate items). 

Model Unit Effectiveness = percent of units demanded in the 90 day test 

period, and satisfied by those items that were on the candidate file 

(noncandidate items excluded). 

Predicted Model Effectiveness = Predicted number of requisitions satis- 

fied divided by the predicted number of requisitions for candidate items, 

TIT.  FINDINGS 

This section is comprised of two parts.  The first part evaluates the 

validity of the probability distributions currently in use (the Normal and 

Poisson) and determines the appropriate probability dlstribution(s). 

The second part discusses the effectiveness of loads built with the proposed 

probability dlstribution(s) versus the distributions currently in use. 

A.  PROBABILITY DISTRIBUTION ANALYSIS.  First, we look at demand for the 

aggregate level.  Next, we analyze demand for each AS.  Then, we examine the 
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demand for a sample of National Item Identification Numbers (NIINs). The intent 

Is to determine what pattern(s) (If any) exist at the various levels of demand, 

in order to hypothesize a probability distribution. 

1.  Aggregate Level.  The quantities demanded were summed quarterly for 

each NUN across all tenders.  TABLE II and FIGURE 3 display the summary 

statistics and box plot for the aggregate data set.  As can be seen, the data 

are extremely skewed.  The mean is 52 times greater than the median.  Frequency 

distributions showed that the value for the 25th percentile is zero and the 

75th percentile is seven. Ninety percent of the quantities demanded are 50 or 

less, which indicates that the mean is a value greater than the 90th percentile. 

The large measurements for the variance and standard deviation indicate that 

the aggregate data have a large spread.  However, the distance betv^een 25th and 

75th percentiles is very small, as evidenced by the same line on the box plot. 

There are no values smaller than the 25th percentile, but many values more than 

three interquantiles greater than the box.  The values for the skewness and 

kurtosis are extreme.  Based on the summary statistics and box plot, we would 

not be willing to believe that demand, in the aggregate, is Normally 

distributed.  The Kolmogorov's D statistic, .48, and the .01 probability of 

observing a D statistic that sl7:e, validate this assum.ption.  The variance to 

mean ratio makes the Poisson distribution an unlikely candidate since its 

value is much greater than one. 

t» 
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TAPLF  IT 

SITMMARY  STATISTICS FOR THE AGGREGATE LEVEL 

Mean (X) 52 

Median (M) 1 

Mode (M ) 
o 

0 

Variance (S2) 1,526,692 

Std (S) 1,235 

Skewness (SK) 112 

Kurtosls (K) 15,989 

Variance to Mean Ratio 29,357 

D .48 

P > D .01 

^ —— 11—■ I.I..I —    m—m   iw ■ ■       II     ■   I      II ■ ■  ■      .1. 

* 

* 

BOX PLOT OF AGGREGATE DATA 

FIGURE 3 

2. Tender Level.  TABLE III and FIGURE 4 show summary statistics and box 

plots by Tender/SUBASE and indicate that demand at the tender level has a 

similar pattern to demand at the aggregate level.  There are no observations 

less than the 25th percentlle. The 25th percentlle, the median, and 75th 
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percentile all have the same value, zero, for each Unit Identification Code 

(UIC).  In each case, the mean is larger then the median. While the degree of 

skewness varies from tender to tender, every tender's demand is extremely skewed. 

The measurements of skewness and kurtosis at the tender level are consistent 

with those found at the aggregate level, as are the D statistics and the 

probabilities of observing D statistics that size.  The variance to mean ratio 

was not computed for each UIC; however, the variance in each case is much larger 

than the mean and the ratios would all be greater than one.  Thus, neither the 

Poisson nor Normal distributions are good candidates for demand at the tender 

level. 

TABLE III 

SUMMARY STATISTICS FOR INDIVIDUAL TENDERS 

—_ 
UIC X M M 

o 
S2 S SK K D P > D 

N.London 4.8 0 0 34,238 185 147 27,092 .49 .01 
P. Harbor 5.5 0 0 24,255 155 90 9,673 .49 .01 
AS-11 4.9 0 0 16,218 127 138 28,296 .48 .01 
AS-12 4.1 0 0 11,787 108 132 24,643 .49 .01 
AS-16 5.1 0 0 36,196 190 105 13,394 .49 .01 
AS-18 5.6 0 0 42,953 207 185 52,419 .49 .01 
AS-19 4.1 0 0 19,290 138 166 44,603 .49 .01 
AS-31 5.6 0 0 20,926 144 119 19,826 .48 .01 
AS-32 6.1 0 0 24,895 157 109 16,222 .48 .01 
AS-33 6.6 0 0 32,696 180 135 28,557 .49 .01 
AS-3A 6.2 0 0 20,925 144 156 39,898 .48 .01 
AS-36 5.5 0 0 22,810 151 137 26,629 .49 .01 
AS-37 4.8 0 0 18,860 137 112 17,025 .49 .01 
AS-39 4.4 0 0 8,860 94 108 18,412 .48 .01 
AS-40 4.4 0 0 10,143 100 119 20,604 .48 .01 
AS-41 3.0 0 0 8,181 90 161 36,332 .49 .01 
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3.  NUN Level.  Thus far, we have confined ourselves to demand at aggregate 

or tender levels.  This analysis was useful in determining the patterns that 

exist; but to determine an appropriate probability distribution, it is 

necessary to consider individual items. 

;. We took a sample of one hundred items using a Normal random number generator. 

In order to test the validity of the current distributions (Normal and Poisson) 

and hypothesize a new distribution, we decided that an item needed at least 

five positive quarterly demands.  Twenty-five of the hundred items met this 

requirement.  The sample is validated in APPENDIX B.     , ,    - 

j,  AS load lists are hull constructed (i.e., a selected group of submarines 

are supported by each tender).  Since load lists and demands vary from tender 

to tender, each tender could have its own demand distribution.  Therefore, we 

conducted the K-W test for the quarterly demands for an item across all tenders 

having demand for that item to determine if we can apply the same probability 

distribution to all tenders.  The Chi Square statistics, degrees of freedom, 

and associated probabilities of observing a Chi Square (KW') statistic that 

size are displayed in TABLE IV.  The test could not be conducted for one item 

and was unnecessary for four others (the data were the same on each tender or 

there was only one tender having demand for that item).  Of the items tested, 

only one was found to have demand not homogeneous across tenders having demand 

for that item (as the probability of observing a KW' statistic sheet size 

(.0001 was less than .01).  Since demand for an item did not vary substantially 

among the tenders, the quarterly demands were combined across the ASs, and it 

was not necessary to fit a probability distribution for each tender. 
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TABLE IV 

KRUSKAL-WALLIS TEST OF HOMOGENEITY 

Degrees of 
NUN X^ Freedom Probability > KW' 

000014199 21.08 14 0.0996 
000014937 2.35 6 0.8844 
000016482 6.78 8 0.5608 
000016503 1.24 2 0.5388 
000018027 Number of UICs greater than number of observations j 
000018039 2.00 2 0.3679 
000019359 9.35 7 0.2282 

000030295 3.13 7 ■  0.8724 
000030688 3.00 4 0.5578 
000034011 1.50 3 0.6823 
000035490 38.42 10 0.0001 
000035845 7.81 9 0.5534 
000042695 All data tied 
000043365 Only one UIC 
000044486 12.01 11 0.3628 
000044489 17.25 12 0.1406 
000048237 All data tied 
000049138 12.00 9 0.2130 
000050592 4.35 4 0.3612 

000066405 1.50 3 0.6823 
000085153 All data tied 
000096804 8.68 9 0.4671 
000105365 5.00 3 0.1718 
000105602 7.70 10 0.6579 
000120809 23.39 14 0.0543 

The summary statistics in TABLE V, and box plots in FIGURE 5, indicate that 

every item is skewed in a positive or rightward direction, which is consistent 

with demand at the aggregate and tender levels.  However, the degree of 

positive skewness and spread for each item as viewed by the box plots varies. 

The degree of skewness (SK) ranges from 0.9 to 6.6.  Kurtosis (K) was measured 

from - 0.2 to 44.7.  Therefore, it is unlikely that any distribution can be 

found that fits demand for every item.  However, it is unlikely that any item 
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in our data Is Normally distributed. 

TABLE V 

ITEM SUMMARY STATISTICS 

NUN X M M 
o 

s= S SK K L 

000014194 32.2 16 0 1,389.9 37.3 1.7 3.3 _ 

000014939 0.4 0 0 0.9 0.9 2.8 7.8 2.1 
000016482 2.1 0 0 43.1 6.6 4.0 17.0 - 
000016503 2.6 0 0 25.0 5.0 2.9 9.8 - 
000018027 0.9 0 0 16.8 4.1 4.8 21.7 19.2 
000018039 0.4 0 0 0.9 1.0 2.8 7.7 2.2 
000019359 13.9 0 0 5,271.48 72.6 6.6 44.7 - 
000030295 1.4 1 0 2.5 1.6 0.9 -0.2 - 
000030688 1.2 0 0 23.7 4.9 5.8 35.4 - 
000034011 0.3 0 0 0.5 0.7 2.5 6.2 1.5 
000035490 13.4 0 0 406.8 20.2 2.0 5.1 - 
000035845 2.1 0 0 16.8 4.1 2.4 5.4 - 
000042675 0.1 0 0 0.2 0.4 3.4 12.1 1.2 
000043365 0.7 0 0 4 2 3.1 9.1 5.6 
000044486 442.0 250 0 475,029 689.2 4.0 20.6 - 
000044489 449.1 250 0 663,303 814.4 4.6 26.7 - 
000048237 0.3 0 0 0.4 0.7 1.7 1.6 1.3 
000049138 0.7 0 0 1.2 1.1 2.1 4.8 1.9 
000050592 1.6 0 0 18.4 4.3 3.7 15.8 - 
000066405 0.2 0 0 0.3 0.6 2.4 5.0 1.3 
000085153 0.6 0 0 0.7 0.8 1.3 0.5 1.2 
000096804 5.6 0 0 202.1 14.2 5.0 29.4 - 
000105365 0.2 0 0 0.3 0.6 3.9 16.4 1.9 
000105602 5.0 4 4 21.4 4.6 1.2 .9 - 
000120809 124.8 111 63 7,903.9 88.9 1.8 4.1 "" 

NOTE;  Since the Poisson distribution is only used for those items with means 

less than one, we computed the variance to mean ratio for those items 

to test the necessary condition for the Poisson distribution; i.e., L 

•' - "■     ■■■'■ i :■[.■■/ 

equals one. 
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The Shapiro-Wilkes test for Normality, shown in TABLE VI, confirms this 

assxxmption.  No item was able to pass this test since the probability of 

observing s  W statistic of this size was less than .01.  Furthermore, the 

consistent positive value for the Variance to Mean Ratio (L), shown in TABLE V 
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for those items with quarterly average demands of one or less, Indicates that 

the Poisson distribution may not be a valid choice for those items. 

TABLE VI 

SHAPIRO-WILKS TEST 

NUN 'W Test Probability > W 

000014194 0.814067 < 0.01 
000014937 0.506876 < 0.01 
000016482 0.38581 < 0.01 
000016503 0.608417 < 0.01 
000018027 0.227411 < 0.01 
000018039 0.492614 < 0.01 
000019359 0.208746 < 0.01 
000030295 0.79725 < 0.01 
000030688 0.278799 < 0.01 
000034011 0.539846 < 0.01 
000035490 0.720658 < 0.01 
000035845 0.592723 < 0.01 
000042675 0.365203 < 0.01 
000043365 0.421453 < 0.01 
000044486 0.613846 < 0.01 
000044489 0.540323 < 0.01 
000048237 0.55889 < 0.01 
000049138 0.645646 < 0.01 
000050592 0.450605 < 0.01 
000066405 0.458841 < 0.01 
000085153 0.689115 < 0.01 
000096804 0.436158 < 0.01 
000105365 0.349079 < 0.01 
000105602 0.859773 < 0.01 
000120809 0.833942 < 0.01 

At this point, we can conclude that demand is not Normally distributed 

at any level.  In fact, due to the skewness of demand, the Normal distribution 

would be a poor choice to model AS demand.  Recall from our earlier discussion 

of the summary statistics, we stated that a Normal distribution's mean would be 

at the 50th percentile; i.e., the mean and median would be equal.  (That is, we 
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would expect half the population to be larger and half smaller than the mean). 

As Indicated by the box plots in FIGURE 5 and the summary statistics in TABLE V, 

the mean is consistently at some level greater than the median (50th percentile) 

Therefore, the load list quantity will be set at a different level than pre- 

scribed by the risk for that Item; I.e., the level of protection and budget 

will be set at different goals (effectiveness) than computed by the model. We 

need a distribution v/hich can account for the positive skewness. ^ 

The following distributions were selected as candidates and tested by 

the Chi-Square goodness-of-flt test for each sample item: 

Binomial - Explains the positive skewness but unlikely to explain the 

high variability of demand. 

Geometric - A special case of the Negative Binomial distribution. Like 

the Negative Binomial, It explains positive skewness and a high 

degree of variability, but handles zero values better. 

Poisson - Tested because it is currently in use. 

Gamma - Explains positive skewness. 

Chi-Square - A special case of the Gamma distribution. 

I .    .■ ■   'i ■ ■. - . 

Exponential - A special case of the Gamma distribution and continuous 

analog of the Geometric distribution.  Explains positive 
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3 skewTiess.  Previously found to describe ciemand In various 

i •       retail and wholesale situations. 

TABLE VII suiraiiarl?;es the Chl-Square goodness-of-fit test results for the 

sample items. 

■''''.'-. ■ »" 

TABLE VII 

CHI-SOUARE GOODNESS-OF-FIT TEST 

Binomial  Geometric  Polsson  Gamma  Chl-Square   Exponential 

000014194 
000014937 
000016482 
000016503 
000018027 
000018039 
000019359 
000030295 
000030688 
000034011 
000035490 
000035845 
000042675 
000043365 
000044486 
00C044489 
000048237 
000049138 
000050592 
000066405 
000085153 
000096804 
000105365 
000105602 
000120809 

X X 

X 
X 

X 

X 

Legend:  X denotes a good fit. 
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'''       Only 13 of the tests Indicated a good fit at a significance level of 

0.01.  Only the Geometric and Exponential distributions had good fits for 

more than one test.  (The Chi-Square statistics, degrees of freedom, and 

probability of observing a Chi-Square statistic that size can be found in 

APPENDIX C.)  Of the six good fits for the Geometric distribution, three of 

the items had quarterly demand averages less than one, and one was close to 

one (1.4).  The remaining two NIINs had means greater than one and also had 

a good fit for the Exponential distribution.  The three items for which the 

Exponential distribution was a good fit all had means greater than one. 

B.  PROBABILITY DISTRIBUTION EVALUATION.  As stated in the approach, two  ' 

distributions are currently used in submarine tender load list computations 

to model demand.  Conventional tenders load list computations use the Normal 

distribution with a range cut of .5 (the conventional benchmark).  FBF tenders 

load list computations use the compound Polsson/Normal distribution to set 

range and depth (FBM Model) . •{■■''■ 

The preceding analysis indicated that the Geometric distribution was a 

good candidate for items with quarterly demand averages less than or equal to 

one, and the Exponential distribution was a good candidate for items with 

quarterly average demands greater than one.  Both the Geometric and Exponential 

distributions are very easy to use.  Using the Geometric cumulative probability 

distribution and solving it algebraically for the load list quantity yields: 

Q = (In Rlsk/ln (1-p)) - 1 

where 
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Q = load list quantity 

In = the natural log 

p = i/(y+ 1) 

y = the quarterly demand average 

Using the Exponential cuirulative probability distribution and solving 

algebraically for the load list quantity yields: 

Q = -y In risk 

where 

Q = the load list quantity 

In = the natural log 

y = the quarterly demand average 

Various combinations of the current distributions and the Geometric 

and Exponential distributions were tested with and without a range cut. 

Several past studies indicated that the probability of a demand can be modeled 

by the compound Bernoulli/Exponential distribution.  These studies indicate 

that if an item had no past demand, it can be modeled by the Bernoulli 

distribution.  If an item had past demand, it could be represented with the 

Exponential distribution.  As the load list includes both demand and BRF items, 

(Items with no historical demand in the candidate data base), we adapted the 

Bernoulli/Exponential distribution. 

To test this distribution, we considered the eight quarters of demand as the 

number of events, and a positive value of quarterly demand as a success.  The 

probability of a success is then equal to the quarterly demand average (V). 

If y is greater than or equal to one, we compute the load Ust quantity using 
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the Exponential distribution, as described previously.  Otherwise, we use the 

Bernoulli distribution to compute the probability (1- ) that demand would equa] 

zero. Then, we compare the probability of a zero demand with the required 

protection (1-risk).  If the probability of a zero demand Is greater than the 

protection, we set the load list quantity to zero.  Otherwise, we compute the 

load list quantity using the Exponential distribution.  Thus, the Bernoulli 

distribution acts as a variable range cut. 

We built the test loads to a predicted net requisitions effectiveness 

goal, a predicted gross requisitions effectiveness goal, and a budget goa}. 

The results for the net effectiveness goal runs are shown in TABLE VIII. 

The Normal distribution with the Geometric and Poisson distribution (without 

a range cut) had undesirable results in terms of range and effectiveness.  We 

got this result since a net effectiveness goal is not appropriate for a model 

with no range cut; I.e., one item could conceivably provide the required net 

effectiveness. 

Replacing the benchmark Normal distribution with the Exponential distribu- 

tion, while retaining the current range cut of .5, produced little difference. 

The Exponential distribution did provide higher requisitions effectiveness 

than the benchmark, but provided less units effectiveness.  The cost for the 

load lists were similar. 

The Exponential distribution, in conjunction with either the Geometric, 

Bernoulli, or Poisson distributions (without a range cut), generated similar 

load lists with respect to effectiveness and cost. However, we prefer the 

Geometric/Exponential since it is the easiest to use and the only one 

theoretically defensible. 
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TABLE VIII 

EFFECTIVENESS STATISTICS 
(85% NET EFFECTIVENESS GOAL) 

SO 

Total Range 
Items on Load List with Dmd 
Items on Load List w/o Dmd 
Candidate Items Not on 
Load List with Demand 

Cost of Load List 
Value No Demand Items 

Gross Requisition Eff 
Model Requisition Eff 
Gross Units Eff 
Model Units Eff 
Predicted Model Eff 

Normal 
Eaiige   Cuts 

(Benchmark) 

17,718 
4,358 

13,360 
986 

$5.7M 
$A.3M 

62.4% 
74.8% 
59.9% 
73.7% 
72.1% 

Poisson 
Normal 

2,971 
390 

2,581 
4,956 

$2.6M 
$2.3M 

6.6% 
8.0% 
17.5% 
21.5% 
31.5% 

Geometric 
Normal 

2,947 
389 

2,558 
4,957 

$2.6M 
$2.3M 

6.6% 
8.0% 
17.5% 
21.5% 
31.5% 

Exponential 
Range Cut .5 

17,718 
4,358 
13,360 

986 

$5.9M 
$4.4M 

63.4% 
76.0% 
57.4% 
70.7% 
72.2% 

Geometric  Bernoulli 
Exponential Exponential 

16,248 
3,904 
12,344 
1,441 

$A,4M 
$3.2M 

59.6% 
71.4% 
56.6% 
69.7% 
69.2% 

17,193 
4,040 
13,153 
1,305 

$4.5M 
$3.3M 

60.5% 
72.5% 
56.5% 
69.6% 
70.0% 

Poisson 
Exponential 

16,557 
3,937 
12,620 
1,408 

$4.4M 
$3.2M 

59.9% 
71.8% 
56.7% 
69.8% 
69.5% 

NOTF-  Where two distributions are shown, the first was used for items with an average quarterlv dj^^^d 
of one or less, and the second was used for items with an average quarterly demand greater than one. 
Unless a range cut is specified, the range was determined by the depth computation. 



Comparing the Geometric/Exponential to the conventional AS benchmark 

(Normal with a .5 range cut) the Geometric/Exponential decreases effectiveness 

2.8 - A.O percentage points.  However, there Is a large difference In cost. 

The Geometric/Exponential costs 22% less than the conventional benchmark. 

^fost of the savings comes from not stocking Items which had no demand during 

the evaluation period.  The cost of Items having no demand during the 

evaluation period is 26% less for the Geometric/Exponential than for the 

benchmark. 

As explained in the beginning of this section, there is some question 

about the validity of building a load 31st to a predicted net effectiveness 

goal without a range cut, since we could compute a predicted net effectiveness 

of 85% for a load list with one Item.  Therefore, we ran several of the 

alternatives to the same budget and then the same predicted gross effectiveness 

as the benchmark. We feel that optimizing to a budget goal is inappropriate 

and unrealistic.  Optimizing to a performance goal such as predicted gross 

effectiveness is more appropriate and manageable. Ve considered a budget goal 

only for comparison purposes. 

TABLE IX summarizes results at the same budget level.  Higher range and 

higher effectiveness was achieved in every category for the models without a 

range cut as compared to the computational AS benchmark.  The Geometric/ 

Exponential and Bernoulli/Exponential distributions had similar results, as 

did the Polsson/Normal and Geometric/Normal distributions.  Of the models 

without a range cut, those using the Normal Distribution for the higher demand 

items had a slightly higher effectiveness than did the Exponential models. 

However, the cost of items with no demand was about 10% higher.  Furthermore, 

the Normal models stocked about 25% more items than the E::ponentlal models. 
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TABLE IX 

FFFECTIVENESS STATISTICS 
:?5.7M BITDGET GOAL 

Normal 
Range Cut .5 

(ConV. Benchmark) 

Total Range 
Items on Load List with Dmd 
Items on Load List w/o Dmd 
Candidate Items Not on 
Load List with Demand 

Cost of Load List 
Value No Demand Items 

Gross Requisition Eff 
Model Requisition Eff 
Gross Units Eff 
Model Units Eff 
Predicted Model Eff 

17,718 
4,358 
13,360 

986 

!55.7M 
$4.3M 

62.4% 
74.8% 
59.9% 
73.7% 
7?. 1% 

Geometric 
E::ponential 

22,672 
4,314 
18,358 
1,031 

$5.6M 
$3.6K 

69.4% 
83.2% 
62.8% 
77.3% 
81.5% 

Bernoulli 
Exponential 

23,520 
4,390 
19,180 

955 

$5.7M 
$3.7M 

70.0% 
83.9% 
62.8% 
77.3% 
82.3% 

Geometric 
Normal 

28,456 
4,529 

23,927 
817 

$5.7M 
$4.0M 

72.0% 
86.3% 
67.3% 
82.8% 
87.3% 

Polsson 
Normal 

(FBM Model) 

28,742 
4,549 

24,193 
797 

$5.7M 
$4.0M 

72.0% 
86.3% 
67.2% 
82.7% 
87.4% 

NOTE: Vhere  two distributions are shown, the first was used for items with an average quarterly demand 
of one or less, and the second was used for items with an average quarterly demand greater than one. 
Unless a range cut is specified, the range was determined by the depth computation. 



TABLE X summarizes results of building the loads to the same gross 

effectiveness goal as the benchmark. Again, the models using the E?:ponential 

distribution had similar results, as did the Normal models. Here, the Normal 

models, without a range cut, provided less range and about four percentage 

points less requisition effectiveness than either the Exponential models or the 

benchmark.  However, they did provide better unit effectiveness.  Both 

Exponential models provided the same range and level of effectiveness as the 

benchmark, but cost 19% less.  The cost of Items on the load list with no 

demand was 23% less for the Exponential models than for the benchmark.  As 

stated previously, the Geometric/Exponential is preferred over Bernoulli/ 

Exponential since It Is theoretically justified in the earlier part of this 

study and is easier to use. 
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TABLE X 

EFFECTIVENESS STATISTICS 
72% GROSS EFFECTIVENESS GOAL 

Normal 
Range Cut .5 

(Conv. Benchmark) 
Geometric 
Exponential 

Bernoulli 
Exponential 

Geometric 
Normal 

Polsson 
Normal 

(FBM Model) 

Total Rar.ge 
Items on Load List with Dmd 
Items on Load List w/o Dm.d 
Candidate Items Not on 
Load List with Demand 

Cost of Load List 
Value No Demand Items 

Gross Requisition Eff 
Model Requisition Eff 
Gross Units Eff 
Model Units Eff 
Predicted Model Eff 

17,718 
4,358 
13,360 

986 

$5.7M 
$4.3N 

62.4% 
74.8% 
59.9% 
73.7% 
72.1% 

17,261 
3,983 
13,278 
1,362 

$4.6M 
$3.3M 

62.3% 
74.7% 
58.5% 
72.0% 
72.0% 

17,902 
4,091 
13,811 
1,254 

$4.6M 
$3.3M 

62.4% 
74.8% 
58.0% 
71.5% 
72.1% 

15,191 
3,398 
11,793 
1,948 

$3.5M 
$2.7M 

58.6% 
70.3% 
62.0% 
76.3% 
72.0% 

15,394 
3,416 
11,978 
1,930 

$3.5M 
$2.7M 

58.6% 
70.3% 
61.9% 
76.2% 
72.1% 

NOTE- Where two distributions are shown, the first was used for Items with an average quarterly demand 
of one or less, and the second was used for Items with an average quarterly demand greater than one, 
Unless a range cut is specified, the range was determined by the depth computation. 



The preceding discussion focused on the conventional AS tender benchmark. 

We were unable to construct an FBM benchmark since VITEO and the Strategic 

Systems Project Office (SSPO) make numerous post-model changes to the FBM 

load list.  However, the current FBK policy of using the Polsson/Normal 

distribution can be evaluated by comparing the FBM model (Polsson/Normal 

distribution) on AS-11 data, to the Geometric/Exponential, Bernoulli/ 

Exponential, and Geometric/Normal at the same budget and same predicted gross 

effectiveness goals, as discussed previously and depleted in TABLES TX and X. 

Here, the results are mixed.  At the budget goal the Polsson/Normal 

provided greater range and effectiveness and had more nonmovers than the 

Geometric/Exponential.   At the predicted gross effectiveness goal, the 

Geometric/Exponential distribution had greater range and requisition 

effectiveness but less unit effectiveness than the FBM model.  The Geometric/ 

Exponential also cost more and had more nonmovers.  For both goals, the actual 

model effectiveness (percent of requisitions satisfied for all candidates) was 

greater than the predicted model effectiveness for the Geometric/Exponential 

distribution and less than the predicted model effectiveness for the Poisson/ 

Normal distribution; i.e., the Geometric/Exponential underestimates 

effectiveness while the Polsson/Normal overestimates effectiveness. 

IV.  SUMMARY ANP CONCLUSIONS 

The results indicate that AS historical demand is not Normal at the 

aggregate level, tender level, or item level. Demands are positively skewed at 

every level.  The degree of skewness and spread varies from item to item; thus, 

it is difficult to determine one distribution which fits demand for every item. 
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The Geometric probability distribution provides the best fit for Items with 

quarterly demand averages less than or equal to one.  The Exponential probability 

distribution provider the best fit for Items with quarterly demand averages 

greater than one.  Both the Geometric and Exponential distributions are faster 

and easier to calculate (and thus less costly) than the other distributions 

considered. 

Testing the effectiveness of the probability distributions indicates that 

different distributions appear more cost effective when run at different goals. 

We showed that applying a net effectiveness goal to a model with no range cut 

is not appropriate. Applying a budget goal to an optimization model of this 

type is also inappropriate. A budget goal will not guarantee a specified 

performance level nor will it guarantee the same level of performance for 

subsequent computations.  A predicted gross effectiveness goal Is the best 

choice for this type of optimization model, as a gross effectiveness goal pro- 

vides to the user a more realistic and manageable method to build a load list. 

Considering range, cost, effectiveness, and the preceding discussion of 

appropriate goals, the Geometric/Exponential appears to be the best alternative 

for conventional ASs.  At the same predicted gross effectiveness as the current 

distribution (Normal with a range cut), the Geometric/Exponential costs 19% less 

while providing the same reauisition effectiveness. 

Due to the numerous post-model changes made to the FBM loads, we were 

unable to quantify the Impact of applying the Geometric/Exponential to FBM 

loads.  However, the Geometric/Exponential distribution was shown to provide 

better effectiveness than the Polsson/Normal when run to a gross effectiveness 

goal. 
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V.  RECOMMENDATIONS 

We recommend computing the AS load list using the Geometric/Exponential 

probability distribution without a range cut in conjunction with a gross 

effectiveness goal. We further recommend that NAVSUPSYSCOM coordinate with 

SSPO to further evaluate the proposed distribution for FBM loads. 
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where '' 

N = the number of observations 

X = the 1  observation 

X = the mean 

S = the standard deviation 

Shapiro-Wilk. 
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S^ = the variance 
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Kolmogorov's D. 
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;  N = the number of observations 

F(X^) = the value of the transformed observation 

Probability of Observing a Larger Value of D. 

(N-,01 + .85//"N)  D 

where ' 

N = the number of observations 

D = the D statistic (test statistic) 

Chi-Square. 
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Fo = the number of observed frequencies for the i cell or interval 

Fe, = the number of expected frequencies for the i cell or interval 

K = the number of cells or intervals 
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where 

N = the total number of observations 

,th 
n. = the number of observations for the i  data set 
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K = the number of data sets 

KW - P/C 

where 

C = 1 - S (t 3-t )/(N3-N) 
i=l 

where 

t. = the rank assigned the 1   tied items 

N = the total number of observations 

£ = the number of ties 
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APPENDIX B:  SA>fPLE VALIDATION 

Due to software limitations, we were not able to use the K-W test to 

validate the sample (the population was too large).  The skewness makes the 

F test and T tests Inappropriate (we are not able to Justify the assumption 

that the values are Normally distributed around the mean.)  Therefore, TABLF I 

will compare the Fummary statistics between the sample and the total population. 

TABLE I 

SUMMARY STATISTICS 

SAMPLE POPUT.ATION 

Minimum 0 0 
25th Percentlle 0 0 
Median 1 1 
75th Percentlle 8 7 
Mean 70.2 52.0 

Mode 0 0 
P(0) .A9 .48 
S^ 119 ,3A0 1,526,692 

S 345.5 1,235.6 

Skewness 1C.6 112.0 
Kurtosis 138.5 15,989.6 

Max 53 ,000 304,414 

The sample and total population are the same through the 75th percentlle. 

The probability of obtaining a zero value, and the modes, are the same for 

both data sets.  The difference is in the skewness.  The population is more 

skewed than the sample.  The maximum value for the population is approximately 

six times greater then the maximum value observed In the sample.  Thus, 

the variance, standard deviation, and mean are larger for the population 
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than for the sample.  This is not a cause for concern. When a population Is 

skewed, then a sample drawn from that population will generally be less skewed 

than the population.  In this case, 75% of the observations will be less than 

or equal to seven.  Thus, we have a better chance (there Is a higher proba- 

bility) of observing values less than or equal to seven than values greater 

than seven.  As values become more extreme, the chance of observing them In 

the sample becomes smaller.  Given this condition, the sample appears to be a 

good representation of the population. 

B-2 



APPENDIX C:  GOODNESS-OF-FIT TEST STATISTICS 

TABLE VTT 

GOODNESS-OF-FIT TEST STATISTICS 
(SAMPLE NIINs) 

NT IN Distribution X2 df P > X2 

000014194 Geometric 12.21 2 .094 
000014194 Exponential 7.02 2 .030 
000030295 Geometric 4.29 2 .119 
000044486 Exponential 5.85 .016 
000049138 Geometric 2.95 .086 
000085153 Binomial 4.08 .043 
000085153 Geometric 1.39 .238 
000085150 Polsson 3.94 .047 
000105602 Geometric 6.44 5 .266 
000105602 Chi Square 4.78 3 .188 
000120809 Geometric 17.01 7 .017 
000120809 Exponential 6.78 3 .079 
000120809 Gamma 2.56 2 .277 
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